Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Main Authors: | Nakatsukasa, Y, Noferini, V |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Elsevier
2019
|
Registos relacionados
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
Por: Fu Sun, et al.
Publicado em: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
Por: Mabel Cuesta
Publicado em: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
Por: Marta Calanchi, et al.
Publicado em: (2021-12-01) -
Rectangular eigenvalue problems
Por: Hashemi, B, et al.
Publicado em: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
Por: S. F. M. Ibrahim
Publicado em: (1998-01-01)