Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...
Main Authors: | Nakatsukasa, Y, Noferini, V |
---|---|
格式: | Journal article |
语言: | English |
出版: |
Elsevier
2019
|
相似书籍
-
Non-real eigenvalues of nonlocal indefinite Sturm–Liouville problems
由: Fu Sun, et al.
出版: (2019-11-01) -
Eigenvalue problems for the p-Laplacian with indefinite weights
由: Mabel Cuesta
出版: (2001-05-01) -
Eigenvalues and bifurcation for Neumann problems with indefinite weights
由: Marta Calanchi, et al.
出版: (2021-12-01) -
Rectangular eigenvalue problems
由: Hashemi, B, et al.
出版: (2022) -
Indefinite eigenvalue problem with eigenparameter in the two boundary conditions
由: S. F. M. Ibrahim
出版: (1998-01-01)