Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems

Sylvester's law of inertia states that the number of positive, negative and zero eigenvalues of Hermitian matrices is preserved under congruence transformations. The same is true of generalized Hermitian definite eigenvalue problems, in which the two matrices are allowed to undergo different co...

ver descrição completa

Detalhes bibliográficos
Principais autores: Nakatsukasa, Y, Noferini, V
Formato: Journal article
Idioma:English
Publicado em: Elsevier 2019