Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients

We study the well-posed ness of discontinuous entropy solutions to quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence: ∂tu + ∑i=1d ∂xifi(u,t,x) = ∑i,j=1d ∂xj (aij (u,t,x)∂xi u), where a(u,t,x) = (aij(u,t,x)) = σa(u,t,x) σa(u,t,x)T is nonnegative definite and each x...

Full description

Bibliographic Details
Main Authors: Chen, G, Karlsen, K
Format: Journal article
Language:English
Published: 2005
_version_ 1797099435171250176
author Chen, G
Karlsen, K
author_facet Chen, G
Karlsen, K
author_sort Chen, G
collection OXFORD
description We study the well-posed ness of discontinuous entropy solutions to quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence: ∂tu + ∑i=1d ∂xifi(u,t,x) = ∑i,j=1d ∂xj (aij (u,t,x)∂xi u), where a(u,t,x) = (aij(u,t,x)) = σa(u,t,x) σa(u,t,x)T is nonnegative definite and each x → fi(u,t,x) is Lipschitz continuous. We establish a well-posedness theory for the Cauchy problem for such degenerate parabolic equations via Kružkov's device of doubling variables, provided σa(u,t, ·) ∈ W2,∞ for the general case and the weaker condition σa(u,t,·) ∈ W1,∞ for the case that a is a diagonal matrix. We also establish a continuous dependence estimate for perturbations of the diffusion and convection functions.
first_indexed 2024-03-07T05:23:40Z
format Journal article
id oxford-uuid:dfcc97a7-4e02-427b-89b2-469532934bb4
institution University of Oxford
language English
last_indexed 2024-03-07T05:23:40Z
publishDate 2005
record_format dspace
spelling oxford-uuid:dfcc97a7-4e02-427b-89b2-469532934bb42022-03-27T09:41:58ZQuasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficientsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:dfcc97a7-4e02-427b-89b2-469532934bb4EnglishSymplectic Elements at Oxford2005Chen, GKarlsen, KWe study the well-posed ness of discontinuous entropy solutions to quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence: ∂tu + ∑i=1d ∂xifi(u,t,x) = ∑i,j=1d ∂xj (aij (u,t,x)∂xi u), where a(u,t,x) = (aij(u,t,x)) = σa(u,t,x) σa(u,t,x)T is nonnegative definite and each x → fi(u,t,x) is Lipschitz continuous. We establish a well-posedness theory for the Cauchy problem for such degenerate parabolic equations via Kružkov's device of doubling variables, provided σa(u,t, ·) ∈ W2,∞ for the general case and the weaker condition σa(u,t,·) ∈ W1,∞ for the case that a is a diagonal matrix. We also establish a continuous dependence estimate for perturbations of the diffusion and convection functions.
spellingShingle Chen, G
Karlsen, K
Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title_full Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title_fullStr Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title_full_unstemmed Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title_short Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients
title_sort quasilinear anisotropic degenerate parabolic equations with time space dependent diffusion coefficients
work_keys_str_mv AT cheng quasilinearanisotropicdegenerateparabolicequationswithtimespacedependentdiffusioncoefficients
AT karlsenk quasilinearanisotropicdegenerateparabolicequationswithtimespacedependentdiffusioncoefficients