Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond

We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, i...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Majumdar, A, Zarnescu, A
বিন্যাস: Journal article
প্রকাশিত: 2009
বিবরন
সংক্ষিপ্ত:We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2 , to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions.