Nearly d-linear convergence bounds for diffusion models via stochastic localization
Denoising diffusions are a powerful method to generate approximate samples from high-dimensional data distributions. Recent results provide polynomial bounds on their convergence rate, assuming L 2 -accurate scores. Until now, the tightest bounds were either superlinear in the data dimension or requ...
Hlavní autoři: | Benton, J, Bortoli, VD, Doucet, A, Deligiannidis, G |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
OpenReview
2024
|
Podobné jednotky
-
Error bounds for flow matching methods
Autor: Benton, J, a další
Vydáno: (2024) -
A continuous time framework for discrete denoising models
Autor: Campbell, A, a další
Vydáno: (2023) -
Linear bounds for stochastic dispersion
Autor: Cranston, M, a další
Vydáno: (2000) -
Convergence to Stochastic Integrals with Non-linear integrands.
Autor: Caceres, C, a další
Vydáno: (2007) -
Chained generalisation bounds
Autor: Clerico, E, a další
Vydáno: (2022)