Conditionally Gaussian PAC-Bayes
Recent studies have empirically investigated different methods to train stochastic neural networks on a classification task by optimising a PAC-Bayesian bound via stochastic gradient descent. Most of these procedures need to replace the misclassification error with a surrogate loss, leading to a mis...
Main Authors: | , , |
---|---|
Format: | Conference item |
Language: | English |
Published: |
Journal of Machine Learning Research
2022
|
Summary: | Recent studies have empirically investigated different methods to train stochastic neural networks on a classification task by optimising a PAC-Bayesian bound via stochastic gradient descent. Most of these procedures need to replace the misclassification error with a surrogate loss, leading to a mismatch between the optimisation objective and the actual generalisation bound. The present paper proposes a novel training algorithm that optimises the PAC-Bayesian bound, without relying on any surrogate loss. Empirical results show that this approach outperforms currently available PAC-Bayesian training methods. |
---|