Potential automorphy over CM fields
Let F be a CM number field. We prove modularity lifting theorems for regular n-dimensional Galois representations over F without any self-duality condition. We deduce that all elliptic curves E over F are potentially modular, and furthermore satisfy the Sato–Tate conjecture. As an application of a d...
Autores principales: | Allen, PB, Calegari, F, Caraiani, A, Gee, T, Helm, D, Le Hung, BV, Newton, J, Scholze, P, Taylor, R, Thorne, JA |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
Princeton University Press
2023
|
Ejemplares similares
-
Automorphy lifting for residually reducible -adic Galois representations, II
por: Allen, PB, et al.
Publicado: (2020) -
Automorphy lifting with adequate image
por: Konstantin Miagkov, et al.
Publicado: (2023-01-01) -
Monodromy for some rank two Galois representations over CM fields
por: Allen, PB, et al.
Publicado: (2020) -
Torsion Galois representations over CM fields and Hecke algebras in the derived category
por: Newton, J, et al.
Publicado: (2016) -
ASYMPTOTIC ALMOST AUTOMORPHY OF FUNCTIONS AND DISTRIBUTIONS
por: Chikh Bouzar, et al.
Publicado: (2020-07-01)