Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
We develop a posteriori upper and lower error bounds for mixed finite element approximations of a general family of steady, viscous, incompressible quasi-Newtonian flows in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$; the family includes degenerate models such as the power-law model, a...
Κύριοι συγγραφείς: | Berrone, S, Suli, E |
---|---|
Μορφή: | Report |
Έκδοση: |
Unspecified
2006
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
ανά: Berrone, S, κ.ά.
Έκδοση: (2008) -
A posteriori error analysis of mixed finite element approximations to quasi-Newtonian incompressible flows
ανά: Barrett, J, κ.ά.
Έκδοση: (2004) -
A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
ανά: Omar El Moutea, κ.ά.
Έκδοση: (2023-04-01) -
Reduced-Basis Approximation of the Viscosity-Parametrized Incompressible Navier-Stokes Equation: Rigorous A Posteriori Error Bounds
ανά: Veroy, K., κ.ά.
Έκδοση: (2003) -
A-posteriori error estimators and RFB
ανά: Cangiani, A, κ.ά.
Έκδοση: (2004)