Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
We develop a posteriori upper and lower error bounds for mixed finite element approximations of a general family of steady, viscous, incompressible quasi-Newtonian flows in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$; the family includes degenerate models such as the power-law model, a...
Główni autorzy: | Berrone, S, Suli, E |
---|---|
Format: | Report |
Wydane: |
Unspecified
2006
|
Podobne zapisy
-
Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows
od: Berrone, S, i wsp.
Wydane: (2008) -
A posteriori error analysis of mixed finite element approximations to quasi-Newtonian incompressible flows
od: Barrett, J, i wsp.
Wydane: (2004) -
A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
od: Omar El Moutea, i wsp.
Wydane: (2023-04-01) -
Reduced-Basis Approximation of the Viscosity-Parametrized Incompressible Navier-Stokes Equation: Rigorous A Posteriori Error Bounds
od: Veroy, K., i wsp.
Wydane: (2003) -
A-posteriori error estimators and RFB
od: Cangiani, A, i wsp.
Wydane: (2004)