Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows

We develop a posteriori upper and lower error bounds for mixed finite element approximations of a general family of steady, viscous, incompressible quasi-Newtonian flows in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$; the family includes degenerate models such as the power-law model, a...

ver descrição completa

Detalhes bibliográficos
Principais autores: Berrone, S, Suli, E
Formato: Report
Publicado em: Unspecified 2006