Relative Ends, l^2 Invariants and Property (T)

We establish a splitting theorem for one-ended groups H<g \tilde{e}(g;h)="" such="" that=""> 2 and the almost malnormal closure of H is a proper subgroup of G. This yields splitting theorems for groups G with non-trivial first l^2 Betti number (\beta^2_1(G)). We v...

Full description

Bibliographic Details
Main Authors: Kar, A, Niblo, G
Format: Journal article
Language:English
Published: 2010
_version_ 1826301063933722624
author Kar, A
Niblo, G
author_facet Kar, A
Niblo, G
author_sort Kar, A
collection OXFORD
description We establish a splitting theorem for one-ended groups H<g \tilde{e}(g;h)="" such="" that=""> 2 and the almost malnormal closure of H is a proper subgroup of G. This yields splitting theorems for groups G with non-trivial first l^2 Betti number (\beta^2_1(G)). We verify the Kropholler Conjecture for pairs H &lt; G satisfying \beta^2_1(G) &gt; \beta^2_1(H). We also prove that every n-dimensional Poincare duality (PD^n) group containing a PD^(n-1) group H with property (T) splits over a subgroup commensurable with H.</g>
first_indexed 2024-03-07T05:26:42Z
format Journal article
id oxford-uuid:e0cd5877-1b37-47d6-be4d-43d3d31e603b
institution University of Oxford
language English
last_indexed 2024-03-07T05:26:42Z
publishDate 2010
record_format dspace
spelling oxford-uuid:e0cd5877-1b37-47d6-be4d-43d3d31e603b2022-03-27T09:50:00ZRelative Ends, l^2 Invariants and Property (T)Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e0cd5877-1b37-47d6-be4d-43d3d31e603bEnglishSymplectic Elements at Oxford2010Kar, ANiblo, GWe establish a splitting theorem for one-ended groups H<g \tilde{e}(g;h)="" such="" that=""> 2 and the almost malnormal closure of H is a proper subgroup of G. This yields splitting theorems for groups G with non-trivial first l^2 Betti number (\beta^2_1(G)). We verify the Kropholler Conjecture for pairs H &lt; G satisfying \beta^2_1(G) &gt; \beta^2_1(H). We also prove that every n-dimensional Poincare duality (PD^n) group containing a PD^(n-1) group H with property (T) splits over a subgroup commensurable with H.</g>
spellingShingle Kar, A
Niblo, G
Relative Ends, l^2 Invariants and Property (T)
title Relative Ends, l^2 Invariants and Property (T)
title_full Relative Ends, l^2 Invariants and Property (T)
title_fullStr Relative Ends, l^2 Invariants and Property (T)
title_full_unstemmed Relative Ends, l^2 Invariants and Property (T)
title_short Relative Ends, l^2 Invariants and Property (T)
title_sort relative ends l 2 invariants and property t
work_keys_str_mv AT kara relativeendsl2invariantsandpropertyt
AT niblog relativeendsl2invariantsandpropertyt