Centered PSD matrices with thin spectrum are M-matrices

We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order n and rank n − 1 with eigenvalue ratio λ max / λ min ≤ n / ( n − 2 ) between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is ti...

Celý popis

Podrobná bibliografie
Hlavní autor: Devriendt, K
Médium: Journal article
Jazyk:English
Vydáno: University of Wyoming Libraries 2023
Popis
Shrnutí:We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order n and rank n − 1 with eigenvalue ratio λ max / λ min ≤ n / ( n − 2 ) between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue problems, and we discuss an application to Laplacian matrices.