Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential
The computation of the Schrödinger equation featuring time-dependent potentials is of great importance in quantum control of atomic and molecular processes. These applications often involve highly oscillatory potentials and require inexpensive but accurate solutions over large spatio-temporal window...
主要な著者: | Iserles, A, Kropielnicka, K, Singh, P |
---|---|
フォーマット: | Journal article |
出版事項: |
Society for Industrial and Applied Mathematics
2018
|
類似資料
-
Compact schemes for laser–matter interaction in Schrödinger equation based on effective splittings of Magnus expansion
著者:: Iserles, A, 等
出版事項: (2018) -
Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials
著者:: Iserles, A, 等
出版事項: (2018) -
Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential
著者:: Bader, P, 等
出版事項: (2016) -
Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime
著者:: Auzinger, W, 等
出版事項: (2019) -
Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators
著者:: Pablo Antonio Moreno Casares, 等
出版事項: (2024-12-01)