Magnus--Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential
The computation of the Schrödinger equation featuring time-dependent potentials is of great importance in quantum control of atomic and molecular processes. These applications often involve highly oscillatory potentials and require inexpensive but accurate solutions over large spatio-temporal window...
Huvudupphovsmän: | Iserles, A, Kropielnicka, K, Singh, P |
---|---|
Materialtyp: | Journal article |
Publicerad: |
Society for Industrial and Applied Mathematics
2018
|
Liknande verk
Liknande verk
-
Compact schemes for laser–matter interaction in Schrödinger equation based on effective splittings of Magnus expansion
av: Iserles, A, et al.
Publicerad: (2018) -
Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials
av: Iserles, A, et al.
Publicerad: (2018) -
Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential
av: Bader, P, et al.
Publicerad: (2016) -
Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime
av: Auzinger, W, et al.
Publicerad: (2019) -
Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators
av: Pablo Antonio Moreno Casares, et al.
Publicerad: (2024-12-01)