Glucokinase (GCK) and other susceptibility genes for beta-cell dysfunction: the candidate approach.

There are well-documented examples in the literature of where determining the genetic aetiology of a disorder has provided insights into important regulatory pathways and protein interactions, and, more recently, has led to improved treatment options for patients. The studies of monogenic forms of b...

全面介绍

书目详细资料
Main Authors: Gloyn, A, Tribble, N, van de Bunt, M, Barrett, A, Johnson, P
格式: Journal article
语言:English
出版: 2008
实物特征
总结:There are well-documented examples in the literature of where determining the genetic aetiology of a disorder has provided insights into important regulatory pathways and protein interactions, and, more recently, has led to improved treatment options for patients. The studies of monogenic forms of beta-cell dysfunction are no exception. Naturally occurring mutations in the gene for the beta-cell enzyme glucokinase (GCK) result in both hyper- and hypo-glycaemia. Over 200 mutations have been described, and careful study of the mutational mechanisms for a number of these has provided important insights into glucokinase regulation. Increased understanding of post-translational regulatory mechanisms holds the promise of novel pharmacotherapeutic options for the treatment of T2DM (Type 2 diabetes mellitus). It is well established that common genetic variation in genes involved in monogenic forms of beta-cell dysfunction contributes to susceptibility to T2DM. Recent genome-wide scans for association have identified a number of novel T2DM susceptibility genes which probably influence beta-cell mass and/or function. Their identification allows the investigation of the role of rare mutations in monogenic beta-cell dysfunction. Current results indicate the importance of these genes in pancreatic development and suggest that mutations which result in a severe functional defect could be lethal.