Relational persistent homology for multispecies data with application to the tumor microenvironment
Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art...
主要な著者: | Stolz, BJ, Dhesi, J, Bull, JA, Harrington, HA, Byrne, HM, Yoon, IHR |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2024
|
類似資料
-
Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors
著者:: Vipond, O, 等
出版事項: (2021) -
Outlier-robust subsampling techniques for persistent homology
著者:: Stolz, BJ
出版事項: (2023) -
Indirect effects and spatial scaling affect the persistence of multispecies metapopulations.
著者:: Bonsall, M, 等
出版事項: (2005) -
Persistent homology of time-dependent functional networks constructed from
coupled time series
著者:: Stolz, B, 等
出版事項: (2017) -
Global and local persistent homology for the shape and classification of biological data
著者:: Stolz-Pretzer, B
出版事項: (2019)