Relational persistent homology for multispecies data with application to the tumor microenvironment
Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art...
Päätekijät: | Stolz, BJ, Dhesi, J, Bull, JA, Harrington, HA, Byrne, HM, Yoon, IHR |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Springer Nature
2024
|
Samankaltaisia teoksia
-
Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors
Tekijä: Vipond, O, et al.
Julkaistu: (2021) -
Outlier-robust subsampling techniques for persistent homology
Tekijä: Stolz, BJ
Julkaistu: (2023) -
Indirect effects and spatial scaling affect the persistence of multispecies metapopulations.
Tekijä: Bonsall, M, et al.
Julkaistu: (2005) -
Persistent homology of time-dependent functional networks constructed from
coupled time series
Tekijä: Stolz, B, et al.
Julkaistu: (2017) -
Global and local persistent homology for the shape and classification of biological data
Tekijä: Stolz-Pretzer, B
Julkaistu: (2019)