Knowledge-guided pretext learning for utero-placental interface detection
Modern machine learning systems, such as convolutional neural networks rely on a rich collection of training data to learn discriminative representations. In many medical imaging applications, unfortunately, collecting a large set of well-annotated data is prohibitively expensive. To overcome data s...
Κύριοι συγγραφείς: | Qi, H, Collins, S, Noble, JA |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Springer
2020
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
SURFACE PARAMETERISATION OF THE UTERO/PLACENTAL INTERFACE USING 3D POWER DOPPLER ULTRASOUND
ανά: Stevenson, G, κ.ά.
Έκδοση: (2011) -
UPI-Net: Semantic contour detection in placental ultrasound
ανά: Qi, H, κ.ά.
Έκδοση: (2019) -
Pretexting and means to counter it
ανά: U. A. Mikhaleva
Έκδοση: (2023-08-01) -
Racially Motivated Spying Pretext
ανά: Vinay Patel
Έκδοση: (2021-03-01) -
Donacuige, literature as a pretext
ανά: Iñaki Tofiño Quesada
Έκδοση: (2014-09-01)