Knowledge-guided pretext learning for utero-placental interface detection
Modern machine learning systems, such as convolutional neural networks rely on a rich collection of training data to learn discriminative representations. In many medical imaging applications, unfortunately, collecting a large set of well-annotated data is prohibitively expensive. To overcome data s...
Auteurs principaux: | Qi, H, Collins, S, Noble, JA |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Springer
2020
|
Documents similaires
-
SURFACE PARAMETERISATION OF THE UTERO/PLACENTAL INTERFACE USING 3D POWER DOPPLER ULTRASOUND
par: Stevenson, G, et autres
Publié: (2011) -
UPI-Net: Semantic contour detection in placental ultrasound
par: Qi, H, et autres
Publié: (2019) -
Pretexting and means to counter it
par: U. A. Mikhaleva
Publié: (2023-08-01) -
Racially Motivated Spying Pretext
par: Vinay Patel
Publié: (2021-03-01) -
Donacuige, literature as a pretext
par: Iñaki Tofiño Quesada
Publié: (2014-09-01)