Knowledge-guided pretext learning for utero-placental interface detection
Modern machine learning systems, such as convolutional neural networks rely on a rich collection of training data to learn discriminative representations. In many medical imaging applications, unfortunately, collecting a large set of well-annotated data is prohibitively expensive. To overcome data s...
Главные авторы: | Qi, H, Collins, S, Noble, JA |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Springer
2020
|
Схожие документы
-
SURFACE PARAMETERISATION OF THE UTERO/PLACENTAL INTERFACE USING 3D POWER DOPPLER ULTRASOUND
по: Stevenson, G, и др.
Опубликовано: (2011) -
UPI-Net: Semantic contour detection in placental ultrasound
по: Qi, H, и др.
Опубликовано: (2019) -
Pretexting and means to counter it
по: U. A. Mikhaleva
Опубликовано: (2023-08-01) -
Racially Motivated Spying Pretext
по: Vinay Patel
Опубликовано: (2021-03-01) -
Donacuige, literature as a pretext
по: Iñaki Tofiño Quesada
Опубликовано: (2014-09-01)