Projections of model spaces for latent graph inference
Graph Neural Networks leverage the connectivity structure of graphs as an inductive bias. Latent graph inference focuses on learning an adequate graph structure to diffuse information on. In this work we employ stereographic projections of the hyperbolic and spherical model spaces, as well as produc...
المؤلفون الرئيسيون: | Posner, H, Arroyo, A, Sáez De Ocáriz Borde, H |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
OpenReview
2023
|
مواد مشابهة
-
Neural latent geometry search: product manifold inference via Gromov-Hausdorff-informed Bayesian optimization
حسب: Sáez de Ocáriz Borde, H, وآخرون
منشور في: (2024) -
GENESIS: generative scene inference and sampling of object-centric latent representations
حسب: Engelcke, M, وآخرون
منشور في: (2020) -
DreamUp3D: object-centric generative models for single-view 3D scene understanding and real-to-sim transfer
حسب: Wu, Y, وآخرون
منشور في: (2024) -
Efficient state-space inference of periodic latent force models
حسب: Reece, S, وآخرون
منشور في: (2014) -
Latent source models for nonparametric inference
حسب: Chen, George H
منشور في: (2015)