Projections of model spaces for latent graph inference
Graph Neural Networks leverage the connectivity structure of graphs as an inductive bias. Latent graph inference focuses on learning an adequate graph structure to diffuse information on. In this work we employ stereographic projections of the hyperbolic and spherical model spaces, as well as produc...
Auteurs principaux: | Posner, H, Arroyo, A, Sáez De Ocáriz Borde, H |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
OpenReview
2023
|
Documents similaires
-
Neural latent geometry search: product manifold inference via Gromov-Hausdorff-informed Bayesian optimization
par: Sáez de Ocáriz Borde, H, et autres
Publié: (2024) -
GENESIS: generative scene inference and sampling of object-centric latent representations
par: Engelcke, M, et autres
Publié: (2020) -
DreamUp3D: object-centric generative models for single-view 3D scene understanding and real-to-sim transfer
par: Wu, Y, et autres
Publié: (2024) -
Efficient state-space inference of periodic latent force models
par: Reece, S, et autres
Publié: (2014) -
Latent source models for nonparametric inference
par: Chen, George H
Publié: (2015)