Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2

Two new series of basic Mn dicarboxylate frameworks, Mn2(CO 2(CH2)nCO2)(OH)2 (where n = 0, 2, 4 and 5) and Mn4(CO2(CH2) nCO2)3(OH)2 (where n = 3 and 5), have been synthesised and the evolution of their structures with changing length of the dicarboxylate ligand was examined. Compounds in the Mn 2(CO...

Full description

Bibliographic Details
Main Authors: Saines, P, Jain, P, Cheetham, A
Format: Journal article
Language:English
Published: 2011
_version_ 1826301556536901632
author Saines, P
Jain, P
Cheetham, A
author_facet Saines, P
Jain, P
Cheetham, A
author_sort Saines, P
collection OXFORD
description Two new series of basic Mn dicarboxylate frameworks, Mn2(CO 2(CH2)nCO2)(OH)2 (where n = 0, 2, 4 and 5) and Mn4(CO2(CH2) nCO2)3(OH)2 (where n = 3 and 5), have been synthesised and the evolution of their structures with changing length of the dicarboxylate ligand was examined. Compounds in the Mn 2(CO2(CH2)nCO2)(OH) 2 series contain 2 dimensionally inorganically connected layers, which are bridged in the third dimension by the dicarboxylate ligand. While the compounds in this series with n = 0 or 2 contain only octahedrally coordinated Mn, the frameworks with longer ligands, n = 4 or 5, have a 1:1 ratio of octahedrally and trigonal bipyramidally coordinated cations. Structures in the Mn4(CO2(CH2)nCO2) 3(OH)2 series contain inorganically connected double chains of MnOx polyhedra, which comprise an equal number of octahedra and trigonal bipyramids. Trigonal bipyramidal coordination environments are very rarely found in dicarboxylate frameworks and the roles of the longer dicarboxylate ligands and the d5 electronic configuration of Mn 2+ in their formation are discussed. The magnetic properties of Mn2(CO2(CH2)2CO2)(OH) 2 have also been examined. It undergoes two magnetic transitions. The higher temperature transition to a two dimensionally ordered antiferromagnetic phase occurs around 44 K, in low applied fields, and is followed by a transition to a three dimensionally ordered canted antiferromagnetic state near 36 K. The Néel temperature of this phase is unusually high for a transition metal dicarboxylate and the factors thought to support this are examined. © The Royal Society of Chemistry 2011.
first_indexed 2024-03-07T05:34:12Z
format Journal article
id oxford-uuid:e350adb7-79d2-4c49-ab21-5c788bee2993
institution University of Oxford
language English
last_indexed 2024-03-07T05:34:12Z
publishDate 2011
record_format dspace
spelling oxford-uuid:e350adb7-79d2-4c49-ab21-5c788bee29932022-03-27T10:08:11ZEvolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2 Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e350adb7-79d2-4c49-ab21-5c788bee2993EnglishSymplectic Elements at Oxford2011Saines, PJain, PCheetham, ATwo new series of basic Mn dicarboxylate frameworks, Mn2(CO 2(CH2)nCO2)(OH)2 (where n = 0, 2, 4 and 5) and Mn4(CO2(CH2) nCO2)3(OH)2 (where n = 3 and 5), have been synthesised and the evolution of their structures with changing length of the dicarboxylate ligand was examined. Compounds in the Mn 2(CO2(CH2)nCO2)(OH) 2 series contain 2 dimensionally inorganically connected layers, which are bridged in the third dimension by the dicarboxylate ligand. While the compounds in this series with n = 0 or 2 contain only octahedrally coordinated Mn, the frameworks with longer ligands, n = 4 or 5, have a 1:1 ratio of octahedrally and trigonal bipyramidally coordinated cations. Structures in the Mn4(CO2(CH2)nCO2) 3(OH)2 series contain inorganically connected double chains of MnOx polyhedra, which comprise an equal number of octahedra and trigonal bipyramids. Trigonal bipyramidal coordination environments are very rarely found in dicarboxylate frameworks and the roles of the longer dicarboxylate ligands and the d5 electronic configuration of Mn 2+ in their formation are discussed. The magnetic properties of Mn2(CO2(CH2)2CO2)(OH) 2 have also been examined. It undergoes two magnetic transitions. The higher temperature transition to a two dimensionally ordered antiferromagnetic phase occurs around 44 K, in low applied fields, and is followed by a transition to a three dimensionally ordered canted antiferromagnetic state near 36 K. The Néel temperature of this phase is unusually high for a transition metal dicarboxylate and the factors thought to support this are examined. © The Royal Society of Chemistry 2011.
spellingShingle Saines, P
Jain, P
Cheetham, A
Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title_full Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title_fullStr Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title_full_unstemmed Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title_short Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO 2)(OH)2 and Mn4(CO2(CH 2)nCO2)3(OH)2
title_sort evolution of the structures and magnetic properties of the manganese dicarboxylates mn2 co2 ch2 nco 2 oh 2 and mn4 co2 ch 2 nco2 3 oh 2
work_keys_str_mv AT sainesp evolutionofthestructuresandmagneticpropertiesofthemanganesedicarboxylatesmn2co2ch2nco2oh2andmn4co2ch2nco23oh2
AT jainp evolutionofthestructuresandmagneticpropertiesofthemanganesedicarboxylatesmn2co2ch2nco2oh2andmn4co2ch2nco23oh2
AT cheethama evolutionofthestructuresandmagneticpropertiesofthemanganesedicarboxylatesmn2co2ch2nco2oh2andmn4co2ch2nco23oh2