Small heat-shock proteins and their role in mechanical stress

The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shoc...

Full description

Bibliographic Details
Main Authors: Collier, MP, Benesch, JLP
Format: Journal article
Language:English
Published: Springer 2020
_version_ 1797100199828520960
author Collier, MP
Benesch, JLP
author_facet Collier, MP
Benesch, JLP
author_sort Collier, MP
collection OXFORD
description The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions – enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force – will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
first_indexed 2024-03-07T05:34:22Z
format Journal article
id oxford-uuid:e361347c-e93c-4bde-ab71-9809da5aa326
institution University of Oxford
language English
last_indexed 2024-03-07T05:34:22Z
publishDate 2020
publisher Springer
record_format dspace
spelling oxford-uuid:e361347c-e93c-4bde-ab71-9809da5aa3262022-03-27T10:08:43ZSmall heat-shock proteins and their role in mechanical stressJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e361347c-e93c-4bde-ab71-9809da5aa326EnglishSymplectic ElementsSpringer 2020Collier, MPBenesch, JLPThe ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions – enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force – will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
spellingShingle Collier, MP
Benesch, JLP
Small heat-shock proteins and their role in mechanical stress
title Small heat-shock proteins and their role in mechanical stress
title_full Small heat-shock proteins and their role in mechanical stress
title_fullStr Small heat-shock proteins and their role in mechanical stress
title_full_unstemmed Small heat-shock proteins and their role in mechanical stress
title_short Small heat-shock proteins and their role in mechanical stress
title_sort small heat shock proteins and their role in mechanical stress
work_keys_str_mv AT colliermp smallheatshockproteinsandtheirroleinmechanicalstress
AT beneschjlp smallheatshockproteinsandtheirroleinmechanicalstress