Interpretable machine learning-based decision support for prediction of antibiotic resistance for complicated urinary tract infections

Urinary tract infections are one of the most common bacterial infections worldwide; however, increasing antimicrobial resistance in bacterial pathogens is making it challenging for clinicians to correctly prescribe patients appropriate antibiotics. In this study, we present four interpretable machin...

全面介紹

書目詳細資料
Main Authors: Yang, J, Eyre, DW, Lu, L, Clifton, DA
格式: Journal article
語言:English
出版: Springer Nature 2023
實物特徵
總結:Urinary tract infections are one of the most common bacterial infections worldwide; however, increasing antimicrobial resistance in bacterial pathogens is making it challenging for clinicians to correctly prescribe patients appropriate antibiotics. In this study, we present four interpretable machine learning-based decision support algorithms for predicting antimicrobial resistance. Using electronic health record data from a large cohort of patients diagnosed with potentially complicated UTIs, we demonstrate high predictability of antibiotic resistance across four antibiotics – nitrofurantoin, co-trimoxazole, ciprofloxacin, and levofloxacin. We additionally demonstrate the generalizability of our methods on a separate cohort of patients with uncomplicated UTIs, demonstrating that machine learning-driven approaches can help alleviate the potential of administering non-susceptible treatments, facilitate rapid effective clinical interventions, and enable personalized treatment suggestions. Additionally, these techniques present the benefit of providing model interpretability, explaining the basis for generated predictions.