Normalisers in Limit Groups

Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.

Chi tiết về thư mục
Những tác giả chính: Bridson, M, Howie, J
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2005
_version_ 1826301867719655424
author Bridson, M
Howie, J
author_facet Bridson, M
Howie, J
author_sort Bridson, M
collection OXFORD
description Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.
first_indexed 2024-03-07T05:38:53Z
format Journal article
id oxford-uuid:e4e4490d-5c67-4469-a556-86b49a0fa779
institution University of Oxford
language English
last_indexed 2024-03-07T05:38:53Z
publishDate 2005
record_format dspace
spelling oxford-uuid:e4e4490d-5c67-4469-a556-86b49a0fa7792022-03-27T10:19:43ZNormalisers in Limit GroupsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e4e4490d-5c67-4469-a556-86b49a0fa779EnglishSymplectic Elements at Oxford2005Bridson, MHowie, JLet $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.
spellingShingle Bridson, M
Howie, J
Normalisers in Limit Groups
title Normalisers in Limit Groups
title_full Normalisers in Limit Groups
title_fullStr Normalisers in Limit Groups
title_full_unstemmed Normalisers in Limit Groups
title_short Normalisers in Limit Groups
title_sort normalisers in limit groups
work_keys_str_mv AT bridsonm normalisersinlimitgroups
AT howiej normalisersinlimitgroups