Normalisers in Limit Groups
Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2005
|
_version_ | 1826301867719655424 |
---|---|
author | Bridson, M Howie, J |
author_facet | Bridson, M Howie, J |
author_sort | Bridson, M |
collection | OXFORD |
description | Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups. |
first_indexed | 2024-03-07T05:38:53Z |
format | Journal article |
id | oxford-uuid:e4e4490d-5c67-4469-a556-86b49a0fa779 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T05:38:53Z |
publishDate | 2005 |
record_format | dspace |
spelling | oxford-uuid:e4e4490d-5c67-4469-a556-86b49a0fa7792022-03-27T10:19:43ZNormalisers in Limit GroupsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e4e4490d-5c67-4469-a556-86b49a0fa779EnglishSymplectic Elements at Oxford2005Bridson, MHowie, JLet $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups. |
spellingShingle | Bridson, M Howie, J Normalisers in Limit Groups |
title | Normalisers in Limit Groups |
title_full | Normalisers in Limit Groups |
title_fullStr | Normalisers in Limit Groups |
title_full_unstemmed | Normalisers in Limit Groups |
title_short | Normalisers in Limit Groups |
title_sort | normalisers in limit groups |
work_keys_str_mv | AT bridsonm normalisersinlimitgroups AT howiej normalisersinlimitgroups |