Normalisers in Limit Groups

Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.

Opis bibliograficzny
Główni autorzy: Bridson, M, Howie, J
Format: Journal article
Język:English
Wydane: 2005

Podobne zapisy