Normalisers in Limit Groups

Let $\G$ be a limit group, $S\subset\G$ a subgroup, and $N$ the normaliser of $S$. If $H_1(S,\mathbb Q)$ has finite $\Q$-dimension, then $S$ is finitely generated and either $N/S$ is finite or $N$ is abelian. This result has applications to the study of subdirect products of limit groups.

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Bridson, M, Howie, J
বিন্যাস: Journal article
ভাষা:English
প্রকাশিত: 2005