Hand classification of fMRI ICA noise components

We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms,...

全面介绍

书目详细资料
Main Authors: Griffanti, L, Douaud, G, Bijsterbosh, J, Evangelisti, S, Alfaro-Almagro, F, Glasser, M, Duff, E, Fitzgibbon, S, Westphal, R, Carone, D, Beckmann, C, Smith, S
格式: Journal article
语言:English
出版: Elsevier 2016
实物特征
总结:We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets.