A heat and mass transfer model of a silicon pilot furnace

The most common technological route for metallurgical silicon production is to feed quartz and a carbon source (e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is tak...

Full description

Bibliographic Details
Main Authors: Sloman, B, Please, C, van Gorder, R, Valderhaug, A, Birkeland, R, Wegge, H
Format: Journal article
Published: Springer 2017
Description
Summary:The most common technological route for metallurgical silicon production is to feed quartz and a carbon source (e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.