Summary: | Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CP(n-1) sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.
|