Modular Calabi-Yau threefolds in string compactifications
<p>All elliptic curves defined over Q are modular. This is the statement of the modularity theorem that relates arithmetic properties of an elliptic curve to a modular form for a subgroup of SL(2,Z). This modularity has been (and still is) the subject of much research in number theory. At firs...
Huvudupphovsman: | Elmi, MAJ |
---|---|
Övriga upphovsmän: | Candelas, P |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2020
|
Ämnen: |
Liknande verk
Liknande verk
-
Calabi-Yau threefolds and heterotic string compactification
av: Davies, R
Publicerad: (2010) -
Heterotic string models on smooth Calabi-Yau threefolds
av: Constantin, A
Publicerad: (2013) -
Calabi–Yau metrics and string compactification
av: Michael R. Douglas
Publicerad: (2015-09-01) -
Investigations in Calabi-Yau modularity and mirror symmetry
av: McGovern, J
Publicerad: (2023) -
Orientifold Calabi-Yau threefolds with divisor involutions and string landscape
av: Ross Altman, et al.
Publicerad: (2022-03-01)