Modular Calabi-Yau threefolds in string compactifications
<p>All elliptic curves defined over Q are modular. This is the statement of the modularity theorem that relates arithmetic properties of an elliptic curve to a modular form for a subgroup of SL(2,Z). This modularity has been (and still is) the subject of much research in number theory. At firs...
Главный автор: | Elmi, MAJ |
---|---|
Другие авторы: | Candelas, P |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2020
|
Предметы: |
Схожие документы
-
Calabi-Yau threefolds and heterotic string compactification
по: Davies, R
Опубликовано: (2010) -
Heterotic string models on smooth Calabi-Yau threefolds
по: Constantin, A
Опубликовано: (2013) -
Calabi–Yau metrics and string compactification
по: Michael R. Douglas
Опубликовано: (2015-09-01) -
Investigations in Calabi-Yau modularity and mirror symmetry
по: McGovern, J
Опубликовано: (2023) -
Orientifold Calabi-Yau threefolds with divisor involutions and string landscape
по: Ross Altman, и др.
Опубликовано: (2022-03-01)