Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains
We prove the global well-posedness and regularity of the (isotropic) Lagrangian averaged Navier-Stokes (LANS-α) equations on a three-dimensional bounded domain with a smooth boundary with no-slip boundary conditions for initial data in the set {u ∈ Hs ∩ H01 | Au = 0 on δΩ, div u = 0}, s ∈ [3, 5), wh...
Үндсэн зохиолчид: | Marsden, J, Shkoller, S |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
2001
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
The anisotropic Lagrangian averaged Euler and Navier-Stokes equations
-н: Marsden, J, зэрэг
Хэвлэсэн: (2003) -
Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-α) equations
-н: Coutand, D, зэрэг
Хэвлэсэн: (2004) -
Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence
-н: Mohseni, K, зэрэг
Хэвлэсэн: (2003) -
Enhancement of the inverse-cascade of energy in the two-dimensional Lagrangian-averaged navier-stokes equations
-н: Nadiga, B, зэрэг
Хэвлэсэн: (2001) -
Global Well-Posedness and Determining Nodes of Non-Autonomous Navier–Stokes Equations with Infinite Delay on Bounded Domains
-н: Huanzhi Ge, зэрэг
Хэвлэсэн: (2025-01-01)