Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains
We prove the global well-posedness and regularity of the (isotropic) Lagrangian averaged Navier-Stokes (LANS-α) equations on a three-dimensional bounded domain with a smooth boundary with no-slip boundary conditions for initial data in the set {u ∈ Hs ∩ H01 | Au = 0 on δΩ, div u = 0}, s ∈ [3, 5), wh...
Автори: | Marsden, J, Shkoller, S |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
2001
|
Схожі ресурси
Схожі ресурси
-
The anisotropic Lagrangian averaged Euler and Navier-Stokes equations
за авторством: Marsden, J, та інші
Опубліковано: (2003) -
Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-α) equations
за авторством: Coutand, D, та інші
Опубліковано: (2004) -
Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence
за авторством: Mohseni, K, та інші
Опубліковано: (2003) -
Enhancement of the inverse-cascade of energy in the two-dimensional Lagrangian-averaged navier-stokes equations
за авторством: Nadiga, B, та інші
Опубліковано: (2001) -
Global Well-Posedness and Determining Nodes of Non-Autonomous Navier–Stokes Equations with Infinite Delay on Bounded Domains
за авторством: Huanzhi Ge, та інші
Опубліковано: (2025-01-01)