Theory of non-dimensional groups in film effectiveness studies

The desire to improve gas turbines has led to a significant body of research concerning film cooling optimization. The open literature contains many studies considering the impact on film cooling performance of both geometrical factors (hole shape, hole separation, hole inclination, row separation,...

Descripció completa

Dades bibliogràfiques
Autors principals: Ornano, F, Povey, T
Format: Journal article
Idioma:English
Publicat: American Society of Mechanical Engineers 2020
Descripció
Sumari:The desire to improve gas turbines has led to a significant body of research concerning film cooling optimization. The open literature contains many studies considering the impact on film cooling performance of both geometrical factors (hole shape, hole separation, hole inclination, row separation, etc.) and physical influences (effect of density ratio (DR), momentum flux ratio, etc.). Film cooling performance (typically film effectiveness, under either adiabatic or diabatic conditions) is almost universally presented as a function of one or more of three commonly used non-dimensional groups: blowing—or local mass flux—ratio, density ratio, and momentum flux ratio. Despite the abundance of papers in this field, there is some confusion in the literature about the best way of presenting such data. Indeed, the very existence of a discussion on this topic points to lack of clarity. In fact, the three non-dimensional groups in common use (blowing ratio (BR), density ratio, and momentum flux ratio) are not entirely independent of each other making aspects of this discussion rather meaningless, and there is at least one further independent group of significance that is rarely discussed in the literature (specific heat capacity flux ratio). The purpose of this paper is to bring clarity to this issue of correct scaling of film cooling data. We show that the film effectiveness is a function of 11 (additional) non-dimensional groups. Of these, seven can be regarded as boundary conditions for the main flow path and should be matched where complete similarity is required. The remaining four non-dimensional groups relate specifically to the introduction of film cooling. These can be cast in numerous ways, but we show that the following forms allow clear physical interpretation: the momentum flux ratio, the blowing ratio, the temperature ratio (TR), and the heat capacity flux ratio. Two of these parameters are in common use, a third is rarely discussed, and the fourth is not discussed in the literature. To understand the physical mechanisms that lead to each of these groups being independently important for scaling, we isolate the contribution of each to the overall thermal field with a parametric numerical study using 3D Reynolds-averaged Navier–Stokes (RANS) and large eddy simulations (LES). The results and physical interpretation are discussed.