Flow equations on spaces of rough paths
Given an Itô vector fieldM, there is a unique solutionξt(h) to the differential equationdξt(h)dt=M(ξt(h)),ξ0(h)=hfor any continuous and piece-wisely smooth pathh. We show that for anyt∈R, the maph→ξt(h) is continuous in thep-variation topology for anyp≥1, so that it uniquely extends to a solution fl...
Autores principales: | Lyons, T, Qian, Z |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
1997
|
Ejemplares similares
-
Differential structure and flow equations on rough path space
por: Qian, Z, et al.
Publicado: (2011) -
Differential structure and flow equations on rough path space
por: Qian, Z, et al.
Publicado: (2011) -
System control and rough paths /
por: 386464 Lyons, Terry, et al.
Publicado: (2002) -
Rough Paths on Manifolds
por: Cass, T, et al.
Publicado: (2011) -
An extension theorem to rough paths
por: Lyons, T, et al.
Publicado: (2007)