Systematic comparison of neural architectures and training approaches for open information extraction
The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form (subject, predicate, object). For example, given the sentence »Beethoven composed the Ode to Joy.«, we are expected to extract the triple (Beethoven,...
Hlavní autoři: | Hohenecker, P, Mtumbuka, F, Kocijan, V, Lukasiewicz, T |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Association for Computational Linguistics
2020
|
Podobné jednotky
-
Deep neural open information extraction with background knowledge
Autor: Mtumbuka, FM
Vydáno: (2022) -
Ontology reasoning with deep neural networks
Autor: Hohenecker, P, a další
Vydáno: (2020) -
Ontology reasoning with deep neural networks (extended abstract)
Autor: Hohenecker, P, a další
Vydáno: (2020) -
Controlling text edition by changing answers of specific questions
Autor: Sha, L, a další
Vydáno: (2021) -
Does the objective matter? Comparing training objectives for pronoun resolution
Autor: Yordanov, Y, a další
Vydáno: (2020)