Fast memory-efficient generalized belief propagation
Generalized Belief Propagation (GBP) has proven to be a promising technique for performing inference on Markov random fields (MRFS). However, its heavy computational cost and large memory requirements have restricted its application to problems with small state spaces. We present methods for reducin...
Những tác giả chính: | Kumar, MP, Torr, PHS |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Springer Verlag
2006
|
Những quyển sách tương tự
-
Efficiently solving convex relaxations for MAP estimation
Bằng: Kumar, MP, et al.
Được phát hành: (2008) -
Efficient discriminative learning of parts-based models
Bằng: Kumar, MP, et al.
Được phát hành: (2010) -
Revealing decurve flows for generalized graph propagation
Bằng: Lin, C, et al.
Được phát hành: (2024) -
OBJCUT: efficient segmentation using top-down and bottom-up cues
Bằng: Kumar, MP, et al.
Được phát hành: (2009) -
Improved moves for truncated convex models
Bằng: Kumar, MP, et al.
Được phát hành: (2009)