Fast memory-efficient generalized belief propagation
Generalized Belief Propagation (GBP) has proven to be a promising technique for performing inference on Markov random fields (MRFS). However, its heavy computational cost and large memory requirements have restricted its application to problems with small state spaces. We present methods for reducin...
Hlavní autoři: | Kumar, MP, Torr, PHS |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer Verlag
2006
|
Podobné jednotky
-
Efficiently solving convex relaxations for MAP estimation
Autor: Kumar, MP, a další
Vydáno: (2008) -
Efficient discriminative learning of parts-based models
Autor: Kumar, MP, a další
Vydáno: (2010) -
Revealing decurve flows for generalized graph propagation
Autor: Lin, C, a další
Vydáno: (2024) -
OBJCUT: efficient segmentation using top-down and bottom-up cues
Autor: Kumar, MP, a další
Vydáno: (2009) -
Improved moves for truncated convex models
Autor: Kumar, MP, a další
Vydáno: (2009)