Exponential stabilization of discrete-time switched linear systems
This article studies the exponential stabilization problem for discrete-time switched linear systems based on a control-Lyapunov function approach. It is proved that a switched linear system is exponentially stabilizable if and only if there exists a piecewise quadratic control-Lyapunov function. Su...
Main Authors: | , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2009
|
Summary: | This article studies the exponential stabilization problem for discrete-time switched linear systems based on a control-Lyapunov function approach. It is proved that a switched linear system is exponentially stabilizable if and only if there exists a piecewise quadratic control-Lyapunov function. Such a converse control-Lyapunov function theorem justifies many of the earlier synthesis methods that have adopted piecewise quadratic Lyapunov functions for convenience or heuristic reasons. In addition, it is also proved that if a switched linear system is exponentially stabilizable, then it must be stabilizable by a stationary suboptimal policy of a related switched linear-quadratic regulator (LQR) problem. Motivated by some recent results of the switched LQR problem, an efficient algorithm is proposed, which is guaranteed to yield a control-Lyapunov function and a stabilizing policy whenever the system is exponentially stabilizable. © 2009 Elsevier Ltd. All rights reserved. |
---|