Local characterization of one-dimensional topologically ordered states

We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected topological order. We show that ground states within the topological phase cannot be connected with each other through local operations and classical communication between a bipartition of the system. Our...

Full description

Bibliographic Details
Main Authors: Cui, J, Amico, L, Fan, H, Gu, M, Hamma, A, Vedral, V
Format: Journal article
Language:English
Published: 2013
Description
Summary:We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected topological order. We show that ground states within the topological phase cannot be connected with each other through local operations and classical communication between a bipartition of the system. Our claim is demonstrated by analyzing the entanglement spectrum and Rényi entropies of different physical systems that provide examples for symmetry-protected topological phases. Specifically, we consider the spin-1/2 cluster-Ising model and a class of spin-1 models undergoing quantum phase transitions to the Haldane phase. Our results provide a probe for symmetry-protected topological order. Since the picture holds even at the system's local scale, our analysis can serve as a local experimental test for topological order. © 2013 American Physical Society.