Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics
Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, whic...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Published: |
AIP Publishing
2018
|
_version_ | 1797101370517487616 |
---|---|
author | Santos, J Bailly-Grandvaux, M Ehret, M Arefiev, A Batani, D Beg, F Calisti, A Ferri, S Florido, R Forestier-Colleoni, P Fujioka, S Gigosos, M Giuffrida, L Gremillet, L Honrubia, J Kojima, S Korneev, P Law, K Marques, J Morace, A Mosse, C Peyrusse, O Rose, S Roth, M Sakata, S Suzuki-Vidal, F Tikhonchuk, V Toncian, T Woolsey, N Zhang, Z |
author_facet | Santos, J Bailly-Grandvaux, M Ehret, M Arefiev, A Batani, D Beg, F Calisti, A Ferri, S Florido, R Forestier-Colleoni, P Fujioka, S Gigosos, M Giuffrida, L Gremillet, L Honrubia, J Kojima, S Korneev, P Law, K Marques, J Morace, A Mosse, C Peyrusse, O Rose, S Roth, M Sakata, S Suzuki-Vidal, F Tikhonchuk, V Toncian, T Woolsey, N Zhang, Z |
author_sort | Santos, J |
collection | OXFORD |
description | Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ 2 las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by protondeflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. |
first_indexed | 2024-03-07T05:50:56Z |
format | Journal article |
id | oxford-uuid:e8d91b37-3cd6-4154-9300-52413f4914b6 |
institution | University of Oxford |
last_indexed | 2024-03-07T05:50:56Z |
publishDate | 2018 |
publisher | AIP Publishing |
record_format | dspace |
spelling | oxford-uuid:e8d91b37-3cd6-4154-9300-52413f4914b62022-03-27T10:49:56ZLaser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physicsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e8d91b37-3cd6-4154-9300-52413f4914b6Symplectic Elements at OxfordAIP Publishing2018Santos, JBailly-Grandvaux, MEhret, MArefiev, ABatani, DBeg, FCalisti, AFerri, SFlorido, RForestier-Colleoni, PFujioka, SGigosos, MGiuffrida, LGremillet, LHonrubia, JKojima, SKorneev, PLaw, KMarques, JMorace, AMosse, CPeyrusse, ORose, SRoth, MSakata, SSuzuki-Vidal, FTikhonchuk, VToncian, TWoolsey, NZhang, ZPowerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ 2 las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by protondeflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. |
spellingShingle | Santos, J Bailly-Grandvaux, M Ehret, M Arefiev, A Batani, D Beg, F Calisti, A Ferri, S Florido, R Forestier-Colleoni, P Fujioka, S Gigosos, M Giuffrida, L Gremillet, L Honrubia, J Kojima, S Korneev, P Law, K Marques, J Morace, A Mosse, C Peyrusse, O Rose, S Roth, M Sakata, S Suzuki-Vidal, F Tikhonchuk, V Toncian, T Woolsey, N Zhang, Z Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title | Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title_full | Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title_fullStr | Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title_full_unstemmed | Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title_short | Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics |
title_sort | laser driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy density physics |
work_keys_str_mv | AT santosj laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT baillygrandvauxm laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT ehretm laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT arefieva laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT batanid laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT begf laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT calistia laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT ferris laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT floridor laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT forestiercolleonip laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT fujiokas laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT gigososm laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT giuffridal laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT gremilletl laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT honrubiaj laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT kojimas laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT korneevp laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT lawk laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT marquesj laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT moracea laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT mossec laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT peyrusseo laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT roses laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT rothm laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT sakatas laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT suzukividalf laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT tikhonchukv laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT tonciant laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT woolseyn laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics AT zhangz laserdrivenstrongmagnetostaticfieldswithapplicationstochargedbeamtransportandmagnetizedhighenergydensityphysics |