Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
Autors principals: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
Springer International Publishing
2015
|
Ítems similars
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
per: Simons, C, et al.
Publicat: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
per: Steinberg Martin H, et al.
Publicat: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
per: Simon Grund, et al.
Publicat: (2016-10-01) -
Flexible Imputation of Missing Data
per: Hakan Demirtas
Publicat: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
per: Alabadla, Mustafa, et al.
Publicat: (2022)