Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
主要な著者: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer International Publishing
2015
|
類似資料
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
著者:: Simons, C, 等
出版事項: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
著者:: Steinberg Martin H, 等
出版事項: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
著者:: Simon Grund, 等
出版事項: (2016-10-01) -
Flexible Imputation of Missing Data
著者:: Hakan Demirtas
出版事項: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
著者:: Alabadla, Mustafa, 等
出版事項: (2022)