Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
PURPOSE: Missing data are a well-known and widely documented problem in cost-effectiveness analyses alongside clinical trials using individual patient-level data. Current methodological research recommends multiple imputation (MI) to deal with missing health outcome data, but there is little guidanc...
Автори: | Simons, C, Rivero-Arias, O, Yu, L, Simon, J |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer International Publishing
2015
|
Схожі ресурси
Схожі ресурси
-
Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
за авторством: Simons, C, та інші
Опубліковано: (2015) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
за авторством: Steinberg Martin H, та інші
Опубліковано: (2008-12-01) -
Multiple Imputation of Multilevel Missing Data
за авторством: Simon Grund, та інші
Опубліковано: (2016-10-01) -
Flexible Imputation of Missing Data
за авторством: Hakan Demirtas
Опубліковано: (2018-07-01) -
ExtraImpute: a novel machine learning method for missing data imputation
за авторством: Alabadla, Mustafa, та інші
Опубліковано: (2022)