Product decompositions in finite simple groups

We propose a general conjecture on decompositions of finite simple groups as products of conjugates of an arbitrary subset. We prove this conjecture for bounded subsets of arbitrary finite simple groups, and for large subsets of groups of Lie type of bounded rank. Some of our arguments apply recent...

全面介绍

书目详细资料
Main Authors: Liebeck, M, Nikolov, N, Shalev, A
格式: Journal article
语言:English
出版: 2011
实物特征
总结:We propose a general conjecture on decompositions of finite simple groups as products of conjugates of an arbitrary subset. We prove this conjecture for bounded subsets of arbitrary finite simple groups, and for large subsets of groups of Lie type of bounded rank. Some of our arguments apply recent advances in the theory of growth in finite simple groups of Lie type, and provide a variety of new product decompositions of these groups.