Product decompositions in finite simple groups
We propose a general conjecture on decompositions of finite simple groups as products of conjugates of an arbitrary subset. We prove this conjecture for bounded subsets of arbitrary finite simple groups, and for large subsets of groups of Lie type of bounded rank. Some of our arguments apply recent...
Auteurs principaux: | Liebeck, M, Nikolov, N, Shalev, A |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2011
|
Documents similaires
-
A conjecture on product decompositions in simple groups
par: Liebeck, M, et autres
Publié: (2010) -
Groups of Lie type as products of SL2 subgroups
par: Liebeck, M, et autres
Publié: (2011) -
Algorithms determining finite simple images of finitely presented groups
par: Bridson, M, et autres
Publié: (2019) -
Finite permutation groups
par: Liebeck, M, et autres
Publié: (1979) -
Finite simple groups as expanders.
par: Kassabov, M, et autres
Publié: (2006)